

Mark Scheme (Provisional)

Summer 2021

Pearson Edexcel International Advanced Level In Statistics S2 Paper WST02/01

https://xtremepape.rs/

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2021 Question Paper Log number P63151A Publications Code WST02_01_2106_MS All the material in this publication is copyright © Pearson Education Ltd 2021

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer

https://xtremepape.rs/

Question Number	Scheme			Marks
	roughout the namer the candidates	may use different letters to th	e ones given in the mark saba	me
	roughout the paper the candidates may use different letters to the ones given in the mark scheme. $[X \sim \text{the number of pansy seeds that do not germinate or } Y = \text{the numberthat } do germinate]$			
1. (u)	$X \sim B(20, 0.05)$ or $Y \sim B(20, 0.95)$			B1
(i)	$P(X \le 4) - P(X \le 2) = 0.9974 - 0.9245 \text{ or}$			
				1.41
		$5^{3} \times 0.95^{17} + {20 \choose 4} 0.05^{4} \times 0.95^{16}$	= 0.05958+ 0.01332	M1
		(4)		
	= 0.072909	10	awrt <u>0.0729</u>	A1
(ii)	$P(X \leq 1) \qquad \underline{or} P(Y \geq 19)$	$= 20 \times (0.95)^{19} (0.05) + (0.95)^{2}$	20	M1
	= 0.7358	= 0.735839	awrt <u>0.736</u>	A1 (5)
(b)	[Let W = no. of packets where Y >	191 $D(W - 5) - (10.7259)$	"\ ⁵	M1
	[Let W – no. of packets where $T >$			
		= 0.215/3	awrt <u>0.216</u>	A1 (2)
				(2)
(c)	$H_0: p = 0.05$ $H_1: p > 0.05$			B1
				(1)
(d)		4. V D(100 0 05)	$\mathbf{T}_{\mathbf{T}}$	N 1 A 1
(u)	[V= no. of seeds that do not germina	· · ·		M1A1
	$\mathbf{P}(\mathbf{U} \ge 0) = 1 \cdot \mathbf{P}(\mathbf{U} < 7)$	CR for 1-tail in (c)	CR for 2-tail in (c)	
	P(V ≥ 8) = 1-P(V ≤ 7) = 1-0.8666 = 0.1334	$P(V \ge 9) = 0.0681$	$P(V \ge 10) = 0.0318$	M1
	= 1 - 0.8666	$P(V \ge 10) = 0.0318$	$P(V \ge 11) = 0.0137$	
				A1
	Accept H_0 <u>or</u> not significant <u>or</u> 8 d			dM1 A1cso
	Data consistent with <i>Spany</i> 's claim or Insufficient evidence for <i>Jem</i> 's belief			(6)
				Total 14
		Notes		
(a)	B1: writing or using B(20,0.05) [A		· · · · · ·	—
(i)	M1: for $P(X \leq 4) - P(X \leq 2)$ and	one correct prob. <u>or</u> $P(X=3)$	P(X=4) and 1 correct prob).
(ii)	M1: for $P(X \le 1)$ or $[20] \times (0.95)^{19} (0.05) + (0.95)^{20}$ - condone missing 20			
(b)	M1: for $(\text{their}(a)(ii))^5$			
(c)	B1: both hypotheses correct with p	or π		
(4)	1st M1. for realizing a Daigson orre	avimation is annuanista	ND $\mathbf{D}_{\mathbf{a}}(05)$ is $M($	0.4.0
(d)	1^{st} M1: for realising a Poisson approximation is appropriate.NB Po(95) is M0A0 1^{st} A1: writing or using $V \sim Po(5)$ i.e correct mean for the Poisson.NB Po(95) is M0A0			
	2^{nd} M1: for writing or using $1 - P(1)$			
	e e e	· · · · · · · · · · · · · · · · · · ·	$P(V \ge 11) = 0.0137$ leading to	a CR.
	or writing $P(V \ge 10) = 0.0318$ or $P(V \ge 9) = 0.0681$ or $P(V \ge 11) = 0.0137$ leading to a CR. Implied by correct CR or probability = awrt 0.133			
	2nd A1 : for awrt 0.133 or $V \ge 10$ oe (e.g. $V \ge 9$) or $V \ge 11$ oe allow any letter but CR must match part(c)			
	3rd dM1 : dep on 2 nd M1. ft their CR or probability. A correct statement based on comparing 8 with their CR <u>or</u> their prob with 0.05 or 0.025 [condone 0.866<0.95]– contradicting non-contextual comments M0			
	3 rd A1 cso: all previous marks must be awarded. A correct statement in context. Need Bold words.			
	NB award M1A1 for a correct contextual statement on its own. If there are no hypotheses or they are the wrong way around, then 3 rd M0 3 rd A0			
~~~	<b>Normal approximation:</b> Award marks in pairs with 2, 4 or 6 marks available			
SC1	Sight of N(5 or 95, $\sqrt{4.75}^2$ ) M1A1; probability awrt 0.125/6 M1A1; Correct contextual concl' dM1A1			
SC2	<b>No approximation:</b> Use of B(100, 0.05) M0A0; probability awrt 0.128 or CR $\ge$ 10 M1A1; then M0A0			
l I				

Question Number	Scheme		
2. (a)	[X = number of faults in 4 m ² so $X \sim Po(3)$ ]		
	$P(X = 5) = P(X \le 5) - P(X \le 4) [= 0.9161 - 0.8153]  \underline{\text{or}}  \frac{e^{-3}3^5}{5!}  (\text{allow } \lambda \text{ instead of } 3)$ = 0.1008 $\underline{\text{or}}  0.100818  \text{awrt}  \underline{0.101}$	M1 A1	(2)
(b)	$[Y = \text{number of faults in 6 m}^2 \text{ so}]  Y \sim \text{Po}(4.5) \text{ and } [P(Y > 5)] = 1 - P(Y \le 5) [= 1 - 0.7029]$ = 0.2971 or (calc) 0.29706956 awrt 0.297		
(c)	<u><b>0.101</b></u> (or ft their answer to (a)) Faults occur independently/ randomly		(2)
(d)	[F = number of faults in a small rug] F ~ Po(0.9)	B1	
	$e^{-"0.9"}n \times 80 + (1 - e^{-"0.9"})n \times 60 \ge 4000$ or $(awrt \ 0.407)n \times 80 + (awrt \ 0.593)n \times 60 \ge 4000$	M1	
	$n \ge \frac{4000}{20e^{-"0.9"} + 60} = 58.71$	M1	
	$20e^{-0.9} + 60$ $n = 59$	A1	
	$n = \underline{32}$	Π	(4)
(e)	$H_0: \lambda = 9$ $H_1: \lambda > 9$	B1	
	$R \sim Po("0.9" \times 10)$ and $[P(R \ge 13)] = 1 - P(R \le 12)$ $[= 1 - 0.8758]$	N/1	
	$P(R \le 13) = 0.9261$ or $P(R \ge 14) = 0.0739$ or $P(R \le 14) = 0.9585$ or $P(R \ge 15) = 0.0415$	M1	
	$[P(R \ge 13)] = 0.1242 \text{ awrt } 0.124 \text{ or } CR R \ge 15 \text{ (oe)}$	A1	
	so insufficient evidence to reject $H_0$ /not significant/ not in critical region	M1	
	There is insufficient evidence that the <b>rate</b> at which <b>faults</b> occur is higher for <b>Rhiannon</b>	A1	(5)
		Tota	~ ~
	Notes		
(a)	<b>M1:</b> for using or writing $P(X \le 5) - P(X \le 4)$ or $\frac{e^{-\lambda} \lambda^5}{5!}$ (Accept letter $\lambda$ or any value of $\lambda$ )		
(b)	<b>M1:</b> writing or using Po(4.5) and sight of $[P(Y > 5)] = 1 - P(Y \le 5)$ Implied by sight of $1 - 0.7$	029	
(c)	2 nd B1: for a comment about faults occurring randomly/independently or Poisson has "no memory"		
(d)	<b>B1:</b> writing or using Po(0.9) May be implied by sight of 0.407 or 0.593 <b>1</b> st <b>M1:</b> for $e^{-\lambda}n \times 80 + (1 - e^{-\lambda})n \times 60 > 4000$ any value for $\lambda$ . Allow = 4000		
	<b>2nd M1:</b> for solving their equation leading to a positive value of <i>n</i> . Allow any value of $\lambda$ and all <b>A1:</b> for an answer of 59 only	ow <i>n</i> =	
(e)	<b>B1:</b> both hypotheses correct with $\lambda$ or $\mu$ . Allow 3 or 0.75 or 0.9 instead of 9		
	<b>1</b> st <b>M1:</b> for writing or using Po("9") and writing or using $1 - P(R \le 12)$ (implied by $1 - 0.8758$ ) or one of $P(R \le 13) = 0.9261$ , $P(R \ge 14) = 0.0739$ , $P(R \le 14) = 0.9585$ , $P(R \ge 15) = 0.0415$ leading to a		
	CR 1st A1: for probability = awrt 0.124 or CP of $P > 15$ or a $q P > 14$		
	1st A1: for probability = awrt 0.124orCR of $R \ge 15$ oe e.g. $R > 14$ 2nd M1: for a correct conclusion based on their prob & 0.05 or their CR & 13. Assume correct hypothesDo not allow contradicting conclusions		
	$2^{nd}$ A1: dep on both Ms for a correct contextual comment including the words in bold.		

Question Number	Scheme	Marks	
<b>3.</b> (a)	12/25 -	M1	
	$6/25 - \frac{1}{0} - \frac{1}{1} - \frac{1}{2} - \frac{1}{4} - \frac{1}{y}$	A1 (2)	
(b)	$\frac{d\left(\frac{3}{50}\left(4y^2 - y^3\right)\right)}{dy} = \frac{3}{50}\left(8y - 3y^2\right)$	M1	
	$\frac{3}{50}(8y-3y^2)=0$ ; $y=\frac{8}{3}$ oe	M1; A1 (3)	
(c)	$J_1(25 25) J_2(50 50)$	M1	
	$= \left[\frac{6}{100}y^4 - \frac{6}{75}y^3\right]_1^2 + \left[\frac{12}{250}y^5 - \frac{3}{300}y^6\right]_2^4$	A1	
	$= \left[ \left(\frac{8}{25}\right) - \left(-\frac{1}{50}\right) \right] + \left[ \left(\frac{1024}{125}\right) - \left(\frac{112}{125}\right) \right] ; \qquad = \frac{1909}{250}  \text{or}  \underline{7.636}  \text{or}  \underline{7.64}$	dM1; A1 (4)	
(d)	$Var(Y) = "\frac{1909}{250}" - 2.696^2$	M1	
	= 0.367584 awrt <u>0.368</u>	A1 (2)	
(e)	$\frac{1}{2}(y-1) \times \frac{6}{25}(y-1) = 0.1  \text{or}  \int_{1}^{x} \frac{6}{25}(y-1)  \mathrm{d}y = 0.1$	M1	
	$\frac{1}{2}(y-1) \times \frac{6}{25}(y-1) = 0.1  \text{or}  \frac{6}{25} \left[ \left( \frac{x^2}{2} - x \right) + \frac{1}{2} \right] = 0.1  \text{or}  \frac{6}{50}(x-1)^2 = 0.1$	A1	
	$(y-1)^2 = \frac{5}{6}$ or $y=1\pm\sqrt{\frac{5}{6}}$ ; $y=1.9128$ awrt <u>1.91</u>	dM1; A1	
		(4) Total 15	
(a)	NotesM1: the two parts must be the right shape and not joined. Ignore labels and condone if it goes below $x$ - axisA1: for 6/25, 12/25, 1, 2 and 4 and must not go beyond 4 or < 1		
(b)	<b>1</b> st <b>M1:</b> for attempting to differentiate $y^n \rightarrow y^{n-1}$ for $n = 2$ or 3 <b>2</b> nd <b>M1:</b> for equating their differential ( $\neq$ f(y)) to zero and an attempt at solving so must reach $y =$		
	A1: for $\frac{8}{3}$ oe and allow awrt 2.67 If $y = 0$ is seen it must be rejected.		
(c)	1 st M1: for using $\int y^2 f(y)$ for both parts, and an attempt at integration (some $y^n \to y^{n+1}$ ) Ignore limits. 1 st A1: for correct integration for both parts. Ignore limits. 2 nd dM1: dep on 1 st M1 for adding the 2 parts together and substituting the correct limits in to each part. 2 nd A1: allow 7.64 or 7.636 You will need to check that they have used algebraic integration.		
(d)	<b>M1:</b> for "their part(c)" $-2.696^{2}$ <b>A1:</b> for awrt 0.368		
(e)	1 st M1: allow $\frac{1}{2}t \times \frac{6}{25}(t-1) = 0.1$ or $\int_{1}^{x} \frac{6}{25}(y-1) dy = 0.1$ and some integration and sub' of 1 and	nd <i>x</i>	
	<ul> <li>1st A1: for a correct equation in any form</li> <li>2nd dM1: dependent on 1st M1 for a correct method for solving their equation. Implied by correct</li> <li>2nd A1: for awrt 1.91 (second solution should be rejected)</li> </ul>	t answer.	

Question Number	Scheme				Marks
4.	[ <i>A</i> = the number on the ball] $P(A=1) = \frac{2}{9}$ $P(A=2) = \frac{1}{3}$ $P(A=5) = \frac{4}{9}$				B1
(i)	Possible samples with a range of 4 are: $(1,1,5)$ $(1,2,5)$ $(1,5,5)$				M1
	$(1,1,5)  \frac{2}{9} \times \frac{2}{9} \times \frac{4}{9} \times 3 = \frac{16}{243} \qquad \underline{\text{or}} \qquad (1,5,5)  \frac{2}{9} \times \frac{4}{9} \times \frac{4}{9} \times 3 = \frac{32}{243}$				M1
	$(1,2,5)  \frac{2}{9} \times \frac{1}{3} \times \frac{4}{3} \times 6 = \frac{16}{81}$				M1
	$P(B=4) = \frac{16}{243} + \frac{32}{243} + \frac{16}{81} = \frac{32}{\underline{81}}$				A1
(ii)	(i) $P(B=0) = \left(\frac{2}{9}\right)^3 + \left(\frac{1}{3}\right)^3 + \left(\frac{4}{9}\right)^3 = \frac{11}{81}$				M1
	$P(B=1) = 3 \times \frac{2}{9} \times \left(\frac{1}{3}\right)^2 + 3 \times \frac{1}{3} \times \left(\frac{2}{9}\right)^2 = \frac{10}{81} \text{ or } P(B=3) = 3 \times \frac{1}{3} \times \left(\frac{4}{9}\right)^2 + 3 \times \frac{4}{9} \times \left(\frac{1}{3}\right)^2 = \frac{28}{81}$				M1
	$1 - \frac{"11"}{81} - \frac{"10"}{81} - \frac{"32"}{81} = \frac{28}{81} \qquad \underline{\text{or}}  1 - \frac{"11"}{81} - \frac{"28"}{81} - \frac{"32"}{81} = \frac{10}{81}$				M1
	<i>b</i> 0	1	3	4	B1
	$P(B=b) \qquad \qquad \frac{11}{81}$	$\frac{10}{81}$	$\frac{28}{81}$	$\frac{32}{81}$	A1
					(10) Total 10
		Notes			
	<b>B1:</b> for writing or using the 3 correc	-			
(i)					
	<b>2nd M1:</b> for $p \times p \times q \times 3$ or $p \times q \times q \times 3$ where p and q are probabilities with $(p+q) < 1$				
	<b>3rd M1:</b> for $p \times q \times r \times 6$ where $p, q$ and $r$ are probabilities with $(p + q + r) = 1$				
	<b>A1:</b> for $\frac{32}{81}$ or awrt 0.395 [C3]	aic: 0.395061/]			
(ii)	<b>1st M1:</b> for $p^3 + q^3 + r^3$ (for their <i>p</i> ,	q and $r$ )			
	<b>2nd M1:</b> for $3 \times p \times (q)^2 + 3 \times q \times (p)^2$ or $3 \times q \times (r)^2 + 3 \times r \times (q)^2$ (for their <i>p</i> , <i>q</i> and <i>r</i> )				
	<b>2</b> W1: for use of all probabilities of $P(B = b)$ adding to 1 [Must have 3, 4 or 5 values for b]				
	<b>B1:</b> for ranges 0, 1, 3 and 4 with none omitted and no extras. Allow extras if assigned probability of 0				
	A1: for a fully correct probability			1 61 1	<b>. . . . . . . . . .</b>
SC A0 in (i)	If A0 scored in (i) <u>and</u> all other marks	scored in (11) and co	orrect prob's for 2	values of <i>b</i> : award <i>A</i>	Al 1n (11)

Question Number	Scheme	Marks	
5 (a)(i)	If $y = 0$ then $1 - (\alpha + \beta y^2) = 0$ $\therefore \alpha = 1$ *	Blcso	
(ii)	If $y = 5$ then $1 - (\alpha + \beta y^2) = 1$		
	$1 + 25\beta = 0  \therefore \beta = -\frac{1}{25} \qquad *$	B1cso	
		(2)	
(b)	$F(y) = \frac{1}{25}y^2$ so $f(y) = \frac{dF(y)}{dy} = \frac{2}{25}y$	M1	
	$\therefore [f(y) = ]\begin{cases} \frac{2}{25}y & 0 \le y \le 5\\ 0 & \text{otherwise} \end{cases}$	A1	
	0 otherwise		
		(2)	
	$\left[ P\left(R > \frac{11}{5}\right) = P\left(Y > \frac{5}{3}\right) = 1 - \frac{1}{25} \times \left(\frac{5}{3}\right)^2 = \right]  \frac{8}{9}  \text{oe}$	B1	
	$\frac{3d - \frac{11}{5}}{3d - d} = \frac{8}{9} \text{ oe } \underline{\text{or}} \frac{\frac{11}{5} - d}{3d - d} = \frac{1}{9} \text{ oe}$	M1	
	$\frac{5}{3d-d} = \frac{5}{9}  \text{oe}  \frac{5}{3d-d} = \frac{1}{9}  \text{oe}$	1011	
	$d = \frac{9}{5}$ oe	A 1	
	$u = \frac{1}{5}$	A1	
		(3)	
(d)	$P\left(Y < \frac{11}{5}\right) = \frac{121}{625}$ or 0.1936	B1	
	[Let $G$ = the number of spins with distance < 2.2 m] [P( $G \ge 5$ ) =]		
	$\left(\left[\frac{1}{9}\right]^{3} \times \left(\left[\frac{121}{625}\right]^{3} + 3 \times \left(\left[\frac{1}{9}\right]^{2} \times \left(\left[\frac{8}{9}\right]^{2} \times \left(\left[\frac{121}{625}\right]^{3} + 3 \times \left(\left[\frac{1}{9}\right]^{3} \times \left(\left[\frac{121}{625}\right]^{2} \times \left(\left[\frac{504}{625}\right]^{2} \times \left(\left[\frac{504}{625}\right]^{2} \times \left(\left[\frac{121}{625}\right]^{2} \times \left(\left[\frac{121}{6}\right]^{2} \times \left(\left[\frac{121}{625}\right]^{2} \times \left(\left[\frac{121}{625$	M1, M1	
	$= 0.000 \ 373226$ awrt <u>0.000 \ 373</u>	A1	
		(4) Total 11	
	Notes	1018111	
(a) (i)	<b>B1:</b> for stating or using the fact that when $y = 0$ then $\alpha + \beta y^2 = 1$		
(ii)	<b>B1:</b> for stating or using that when $y = 5$ then $\alpha + \beta y^2 = 0$ and setting up the equation leading to $\beta = -\frac{1}{25}$		
(b)	<b>M1:</b> for differentiating. Implied by $\pm \frac{2}{"25"}y$ can ft their value of $\beta$		
	A1: for a fully correct $f(y)$ defined for the whole range.		
(c)	<b>B1:</b> for using $F(y)$ and $\frac{5}{3}$ to find $P(Y > \frac{5}{3})$ . Allow $\frac{8}{9}$ or any exact equivalent.		
	<b>M1:</b> for LHS = $p$ where $0$		
	A1: for $\frac{9}{5}$ or any exact equivalent e.g. 1.8		
(d)	<b>B1:</b> for $\frac{121}{625}$ or awrt 0.194 This mark could be implied by a correct answer.		
	<b>1</b> st M1: for $p^3q^3 + np^2(1-p)q^3 + np^3q^2(1-q)$ where p and q are probabilities and n is an integer > 0		
	<b>2nd M1:</b> for $p^3q^3 + 3p^2(1-p)q^3 + 3p^3q^2(1-q)$ where p and q are probabilities.		
	A1: for awrt 0.000 373		

Question Number	Scheme			
6. (i)	z = 1.25			
	$\frac{187.5 - \mu}{\sigma} = 1.25$			
	$187.5 - \mu = 1.25\sigma$			
	$\mu = 225 p$	M1		
	$\sigma = \sqrt{225 p(1-p)}$	M1		
	$(187.5 - 225p)^2 = (1.25)^2 \times 225p(1-p)$ or $(150 - 180p)^2 = 225p(1-p)$ (o.e.)	M1		
	e.g. $900(5-6p)^2 = 225(p-p^2) \implies 4(25-60p+36p^2) = p-p^2$	A1*		
	Leading to $145p^2 - 241p + 100 = 0*$	711		
(ii)	$\left[ (29p-25)(5p-4) = 0 \Longrightarrow \right] \qquad p = 0.8  \underline{\text{or}}  p = \frac{25}{29} \text{ (accept: } 0.862(0689)) $	M1		
	[p=] 0.8 because 0.862 gives a mean greater than 188 (oe)	A1		
		(10) Total 10		
	Notes	1		
(i)	<b>B1:</b> for 1.25 or better (calculator gives: 1.25027)			
	1 st M1: for attempting to use a continuity correction i.e. for sight of $188 \pm 0.5$			
	<b>2nd M1:</b> for standardising using $\mu$ and $\sigma$ or $np$ and $\sqrt{np(1-p)}$ (Condone letter <i>n</i> or any integer > 0)			
	<b>1</b> st A1: for a correct equation with compatible signs, allow 1.250 If using a value for <i>n</i> it must be 225 <b>3</b> rd M1: for $\mu = 225p$ seen at any stage in the working.			
	<b>4th M1:</b> for $\sigma = \sqrt{225 p(1-p)}$ seen at any stage in the working.			
	<ul> <li>5th M1: for squaring to get a quadratic equation in p</li> <li>2nd A1*: dep on all previous Ms and use of 1.25 for at least 1 correct intermediate step from a correct</li> </ul>			
(ii)	quadratic equation e.g one of those in scheme for 5th M1M1:for solving the quadratic correctly-leading to $p = \dots$ or implied by 0.8 or awrt 0.862A1:for 0.8 and a correct reason to eliminate 0.862			

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom